Answer:
option (b)
Explanation:
Io = 10^-12 w/m^2
In Case I:
dB = 80 dB
The formula for the intensity of sound
[tex]dB=10log\left ( \frac{I}{I_{0}} \right )[/tex]
[tex]80=10log\left ( \frac{I_{1}}{I_{0}} \right )[/tex]
[tex]I_{1} = 10^{8}\times I_{0}[/tex]
[tex]I_{1} = 10^{8}\times 10^{-12}=10^{-4}W/m^{2}[/tex] ... (1)
In Case II:
dB = 60 dB
The formula for the intensity of sound
[tex]dB=10log\left ( \frac{I_{2}}{I_{0}} \right )[/tex]
[tex]60=10log\left ( \frac{I_{2}}{I_{0}} \right )[/tex]
[tex]I_{2} = 10^{6}\times I_{0}[/tex]
[tex]I_{2} = 10^{6}\times 10^{-12}=10^{-6}W/m^{2}[/tex] ... (2)
So, by equation 2 and 1 we get
[tex]I_{2}=\frac{I_{1}}{100}[/tex]
Thus, the intensity of sound is 100 times lower.