An insulated container contains 0.3 kg of water at 20 degrees C. An alloy with a mass of 0.090 kg and an initial temperature of 55 degrees C is mixed with the water in the insulated container. When thermal equilibrium is reached, the temperature of the mixture is 25 degrees C. Assume that heat flows only between the alloy and the water. What is the specific heat of the alloy?

Respuesta :

Answer:

The specific heat of the alloy is 2.324 J/g°C

Explanation:

Step 1: Data given

Mass of water = 0.3 kg = 300 grams

Temperature of water = 20°C

Mass of alloy = 0.090 kg

Initial temperature of alloy = 55 °C

The final temperature = 25°C

The specific heat of water = 4.184 J/g°C

Step 2: Calculate the specific heat of alloy

Qlost = -Qwater

Qmetal = -Qwater

Q = m*c*ΔT

m(alloy) * c(alloy) * ΔT(alloy) = -m(water)*c(water)*ΔT(water)

⇒ mass of alloy = 90 grams

⇒ c(alloy) = the specific heat of alloy = TO BE DETERMINED

⇒ ΔT(alloy) = The change of temperature = T2 - T1 = 25-55 = -30°C

⇒ mass of water = 300 grams

⇒ c(water) = the specific heat of water = 4.184 J/g°C

⇒ ΔT(water) = The change of temperature = T2 - T1 = 25 - 20 = 5 °C

90 * c(alloy) * -30°C = -300 * 4.184 J/g°C * 5°C

c(alloy) = 2.324 J/g°C

The specific heat of the  alloy is 2.324 J/g°C