Respuesta :

Answer:

67.5°C will be the final temperature of the water.

Explanation:

Density of water = 1 g/ml

mass = Density × Volume

Mass of 20 mL water = [tex]m_1[/tex]

[tex]m_1=1 g/ml\times 20 mL=20 g[/tex]

Mass of 60 mL water = [tex]m_2[/tex]

[tex]m_2=1 g/ml\times 60 mL=60 g[/tex]

Heat gained by water at 30°C will be equal to heat lost by the water  at 80°C

[tex]Q_1=-Q_2[/tex]

Mass of water at 30°C= [tex]m_1=20 g[/tex]

Specific heat capacity of water = [tex]c_1=4.184 J/g^oC [/tex]

Initial temperature water at 30°C = [tex]T_1=30^oC[/tex]

Final temperature after mixing = [tex]T_2[/tex]=T

[tex]Q_1=m_1c_1\times (T-T_1)[/tex]

Mass of water at 80°C= [tex]m_2=60 g[/tex]

Specific heat capacity of water at 80°C= [tex]c_2=4.184 J/g^oC [/tex]

Initial temperature of the water at 80°C= [tex]T_3=80^oC[/tex]

Final temperature of water after mixing= [tex]T_2[/tex]=T

[tex]Q_2=m_2c_2\times (T-T_3)[/tex]

[tex]Q_1=-Q_2[/tex]

[tex](m_1c_1\times (T-T_1))=-m_2c_2\times (T-T_3)[/tex]

[tex](m_1\times (T-T_1))=-m_2\times (T-T_3)[/tex]

On substituting all values:

[tex](20 g\times (T-30^oC))=-[60 g\times (T-80^oC)][/tex]

we get, T = 67.5 °C

67.5°C will be the final temperature of the water.