Please show your work, thx for the help

Answer:
A. [tex]\frac{8n^{3}}{m^{4}p^{2}}[/tex]
B. [tex]\frac{1}{16}[/tex]
Step-by-step explanation:
We have to simplify two examples of exponent using the rules.
1) A. The given expression is [tex]\frac{8p^{-2} }{m^{4}n^{-3}}[/tex]
Now, [tex]\frac{8p^{-2} }{m^{4}n^{-3}}[/tex]
= [tex]\frac{8}{m^{4}} \times (\frac{p^{-2} }{n^{-3} } )[/tex] {Since the terms are in product form so, we can treat them separately}
= [tex]\frac{8}{m^{4}} \times (\frac{n^{3} }{p^{2}})[/tex]
{Since, using the property of exponents we can write [tex]x^{-a} = \frac{1}{x^{a}}[/tex] and [tex]\frac{1}{x^{-a} } = x^{a}[/tex] }
= [tex]\frac{8n^{3}}{m^{4}p^{2}}[/tex] (Answer)
B. The given expression is [tex]2^{-4}. 3^{0}[/tex]
Now, [tex]2^{-4}. 3^{0}[/tex]
= [tex]\frac{3^{0}}{2^{4}}[/tex]
= [tex]\frac{1}{2^{4}}[/tex] {Since, [tex]x^{0} = 1[/tex] provide x ≠ 0}
= [tex]\frac{1}{16}[/tex] (Answer)