Respuesta :
Answer:
T= 16.67 days
Explanation:
given,
annual demand (D) = 300 units
Ordering cost (S) = $40
Holding cost (H) = $60 per year
n = 250 days per years
Economic order quantity Q
[tex]Q = \sqrt{\dfrac{2DS}{H}}[/tex]
[tex]Q = \sqrt{\dfrac{2\times 300 \times \$ 40}{\$ 60}}[/tex]
[tex]Q = \sqrt{400}}[/tex]
Q = 20 units
now, demand per day
[tex]d = \dfrac{D}{n}[/tex]
[tex]d = \dfrac{300}{250}[/tex]
d = 1.2 units/day
now cycle length will be equal to
[tex]T = \dfrac{Q}{d}[/tex]
[tex]T = \dfrac{20}{1.2}[/tex]
T= 16.67 days
When the orders are placed using the EOQ quantity, the cycle length will be 16.67 days.
Given information
Annual demand (D) = 300 units
Ordering cost (S) = $40
Holding cost (H) = $60 per year
N = 250 days per years
[tex]Q = \sqrt{ 2DS/ H} \\Q = \sqrt{ 2*200*40/ 6} \\Q = \sqrt{400} \\Q = 20 \\[/tex]
Demand per day = D/N
Demand per day = 300 units / 250 days
Demand per day = 1.2 units/day
Cycle length (T) = Q / D
Cycle length (T) = 20 / 1.2
Cycle length (T) = 16.66666
Cycle length (T) = 16.67 days.
In conclusion, when the orders are placed using the EOQ quantity, the cycle length will be 16.67 days.
Read more about EOQ quantity
brainly.com/question/14625177