Respuesta :
Answer:
The sample of 50 mg decay to 10 mg in 377.7 time.
Explanation:
Given that:- The exponential decay model for the decay after t days as:-
[tex][P_t]=[P_0]e^{-0.004261t}[/tex]
Where,
[tex][P_t][/tex] is the concentration at time t
[tex][P_0][/tex] is the initial concentration
Given:
[tex][P_0][/tex] = 50 mg
[tex][A_t][/tex] = 10 mg
So,
[tex]10=50e^{-0.004261t}[/tex]
[tex]e^{-0.004261t}=\frac{1}{5}[/tex]
[tex]t=\frac{\ln \left(5\right)}{0.004261}[/tex]
[tex]t=377.7[/tex]
The sample of 50 mg decay to 10 mg in 377.7 time.
The sample of 50 mg decay to 10 mg in 377.7 time.
Exponential decay:
A model for decay of a quantity for which the rate of decay is directly proportional to the amount present.
[tex][A_t]=[A_0]e^{-0.004261t}[/tex]
where,
[tex][A_t][/tex] is the concentration at time t
[tex][A_0][/tex] is the initial concentration
Given:
[tex][A_t][/tex] = 50 mg
[tex][A_0][/tex] = 10 mg
To find:
t =?
Substituting the values in the above formula:
[tex][A_t]=[A_0]e^{-0.004261t}\\\\10=50e^{-0.004261t}\\\\t=\frac{ln (5)}{0.004261} \\\\t=377.7[/tex]
The sample of 50 mg decay to 10 mg in 377.7 time.
Find more information about exponential decay here:
brainly.com/question/4079209