Respuesta :

Answer:

The linear function is

[tex]f(x)=x-5[/tex]

Step-by-step explanation:

Given values:

[tex]f(10)=5[/tex]

[tex]f(2)=-3[/tex]

From the given values, we can identify the points on the line.

For [tex]f(x)=y[/tex] point can be given as [tex](x,y)[/tex]

So, the points are:

[tex](10,5)[/tex] and [tex](2,-3)[/tex]

Using the points we can find slope of the line [tex]m[/tex].

[tex]m=\frac{y_2-y_1}{x_2-x_1}[/tex]

[tex]m=\frac{-3-5}{2-10}[/tex]

[tex]m=\frac{-8}{-8}[/tex]

∴ [tex]m=1[/tex]

Using point slope equation to find equation of line.

[tex]y-y_1=m(x-x_1)[/tex]

where [tex](x_1,y_1)[/tex] is a point on line.

Using point (10,5) and slope [tex]m=1[/tex] to find equation of line.

[tex]y-5=1(x-10)[/tex]

Simplifying.

[tex]y-5=x-10[/tex]

Adding 5 both sides.

[tex]y-5+5=x-10+5[/tex]

[tex]y=x-5[/tex]

So, the function can be written as:

[tex]f(x)=x-5[/tex]           [ ∵ [tex]y=f(x)[/tex] ]