Respuesta :

Answer:

BC = 18

Step-by-step explanation:

Since ∠B = ∠C then the triangle is isosceles and so

∠B = ∠C = 45°

Using the sine ratio in the right triangle and

sin45° = [tex]\frac{1}{\sqrt{2} }[/tex], then

sin45° = [tex]\frac{opposite}{hypotenuse}[/tex] = [tex]\frac{AC}{BC}[/tex] = [tex]\frac{9\sqrt{2} }{BC}[/tex]

Multiply both sides by BC

BC × sin45° = 9[tex]\sqrt{2}[/tex], that is

BC × [tex]\frac{1}{\sqrt{2} }[/tex] = 9[tex]\sqrt{2}[/tex]

Multiply both sides by [tex]\sqrt{2}[/tex]

BC = 9[tex]\sqrt{2}[/tex] × [tex]\sqrt{2}[/tex] = 9 × 2 = 18