A reaction A(aq) + B(aq) ----> C(aq) has a standard free‑energy change of − 3.87 kJ / mol at 25 °C.
1. What are the concentrations of A , B , and C at equilibrium if, at the beginning of the reaction, their concentrations are 0.30 M, 0.40 M, and 0 M, respectively?

Respuesta :

Answer: The concentration of A, B and C is 0.14 M, 0.24 M and 0.16 M respectively.

Explanation:

Relation between standard Gibbs free energy and equilibrium constant follows:

[tex]\Delta G^o=-RT\ln K_c[/tex]

where,

[tex]\Delta G^o[/tex] = standard Gibbs free energy = -3.87 kJ/mol = -3870 J/mol  (Conversion factor: 1 kJ = 1000 J)

R = Gas constant = [tex]8.314J/K mol[/tex]

T = temperature = [tex]25^oC=[273+25]K=298K[/tex]

[tex]K_c[/tex] = equilibrium constant in terms of concentration

Putting values in above equation, we get:

[tex]-3870J/mol=-(8.314J/Kmol)\times 298K\times \ln K_c\\\\K_c=e^{1.562}=4.77[/tex]

The given chemical reaction follows:

                     [tex]A(aq.)+B(aq.)\rightleftharpoons C(aq.)[/tex]

Initial:           0.30     0.40          0

At eqllm:     0.30-x   0.40-x        x

The expression of [tex]K_c[/tex] for above equation follows:

[tex]K_c=\frac{[C]}{[A]\times [B]}[/tex]

We are given:

[tex]K_c=4.77[/tex]

[tex][A]=0.30-x[/tex]

[tex][B]=0.40-x[/tex]

[tex][C]=x[/tex]

Putting values in above expression, we get:

[tex]4.77=\frac{x}{(0.30-x)\times (0.40-x)}\\\\x=0.16,0.75[/tex]

Neglecting the value of x = 0.75 because the equilibrium concentration cannot be greater than initial concentration.

So, concentration of A = (0.30 - x) = (0.30 - 0.16) = 0.14 M

Concentration of B = (0.40 - x) = (0.40 - 0.16) = 0.24 M

Concentration of C = x = 0.16 M

Hence, the concentration of A, B and C is 0.14 M, 0.24 M and 0.16 M respectively.