At t=0, a particle leaves the origin with a velocity of 9.0 m/s in the positive y direction and moves in the xy plane with a constant acceleration of (2.0i - 4.0j) m/s2. At the instant the x coordinate of the particle is 15 m, what is the speed of the particle?
a. 10 m/s
b. 16 m/s
c. 12 m/s
d. 14 m/s
e. 26 m/s

Respuesta :

Answer:

e.26m/s

Explanation:

Vf=Vi+at      (1)

Vf=9j+(2i-4j)t

X= X₀+at

now, in the i direction

15=O+2t or t=7.5 when x position is 15

Lets put that into the (1) equation, solve for Vf.

 Vf=9j+(2i-4j)7.5

Vf= 15i - 21j

Speed= [tex]\sqrt{xcomponent^2 + ycomponent^2}[/tex]

Vf= 25.8 m/s

The speed of the particle when it is at x = 15m after leaving the origin with a velocity of 9.0 m/s in the y-direction and moving in the xy plane with a constant acceleration of (2.0i - 4.0j) m/s² is 10 m/s (option a).  

We can find the speed of the particle with the following equation:

[tex] v_{f}^{2} = v_{i}^{2} + 2ad [/tex]  

Where:

  • [tex] v_{f} [/tex]: is the final velocity
  • [tex] v_{i} [/tex]: is the initial velocity
  • a: is the acceleration
  • d: is the distance

The magnitude of the final speed is given by:

[tex] v_{f} = \sqrt{v_{f}_{x}^{2} + v_{f}_{y}^{2}} [/tex]   (1)

So, we need to find the horizontal (x) and vertical (y) components of the velocity.

     

The horizontal component    

[tex] v_{f}_{x}^{2} = v_{i}_{x}^{2} + 2a_{x}x [/tex]  (2)

Where:

  • x: is the horizontal position = 15 m  
  • [tex]a_{x}[/tex]: is the horizontal component of the acceleration = 2.0 m/s²
  • [tex]v_{i}_{x}[/tex]: is the horizontal component of the initial velocity = 0

Then, the x-component of v is (eq 2):

[tex] v_{f}_{x} = \sqrt{2*2.0 m/s^{2}*15 m} = 7.75 m/s [/tex]      

The vertical component                    

[tex] v_{f}_{y}^{2} = v_{i}_{y}^{2} + 2a_{y}y [/tex]   (3)

Where:

  • y: is the vertical position        
  • [tex]a_{y}[/tex]: is the vertical component of the acceleration = -4.0 m/s²
  • [tex]v_{i}_{y}[/tex]: is the vertical component of the initial velocity = 9.0 m/s

           

We can find the vertical position with the time:    

[tex] x_{f} = x_{i} + v_{i}_{x}t + \frac{1}{2}a_{x}t^{2} [/tex]

[tex] 15 m = 0 + 0*t + \frac{1}{2}2.0 m/s^{2}*t^{2} [/tex]  

[tex] t = \sqrt{\frac{2*15m}{2.0 m/s^{2}}} = 3.87 s [/tex]

Now, the vertical position is:  

[tex] y_{f} = y_{i} + v_{i}_{y}t + \frac{1}{2}a_{y}t^{2} [/tex]

[tex] y_{f} = 0 + 9.0 m/s*3.87s + \frac{1}{2}(-4.0 m/s^{2})*(3.87 s)^{2} = 4.88 m [/tex]

Hence, the vertical component of the velocity is (eq 3):

[tex] v_{f}_{y} = \sqrt{(9.0 m/s)^{2} + 2*(-4.0 m/s^{2})*4.88 m} = 6.48 m/s [/tex]  

Finally, the  magnitude of the final speed is (eq 1):

[tex] v_{f} = \sqrt{(7.75 m/s)^{2} + (6.48 m/s)^{2}} = 10.10 [/tex]

Therefore, the speed of the particle is 10 m/s (option a).

Learn more about speed here:

  • https://brainly.com/question/7667446?referrer=searchResults
  • https://brainly.com/question/936572?referrer=searchResults              

I hope it helps you!