One of the moons of Jupiter, named Io, has an orbital radius of 4.22 ✕ 108 m and a period of 1.77 days. Assuming the orbit is circular, calculate the mass of Jupiter.

Respuesta :

Answer:

M_J = 1.875 x 10²⁷ Kg

Explanation:

given,

orbital radius of the moon of Jupiter(r) = 4.22 ✕ 10⁸ m

Period of the moon(T) = 1.77 days

                                = 1.77 x 24 x 60 x 60

                                = 152928 s

using Kepler's formula top calculate mass of the Jupiter

  [tex]T^2 = \dfrac{4\pi^2}{GM_J}r^3[/tex]

where M_J is the mass of the Jupiter

     and G is gravitational constant

  [tex]152928^2 = \dfrac{4\pi^2}{6.67 \times 10^{-11}\times M_J}(4.22 \times 10^8)^3[/tex]

  [tex]M_J = \dfrac{4\pi^2}{6.67 \times 10^{-11}\times 152928^2}(4.22 \times 10^8)^3[/tex]

M_J = 1875.028 x 10²⁴

M_J = 1.875 x 10²⁷ Kg

Mass of Jupiter is equal to M_J = 1.875 x 10²⁷ Kg