Answer:
a) Mean = 27.65
Median = 27.645
b) Relative Frequency = 33.33%
Step-by-step explanation:
We are given the following data set:
25.78, 21.06, 36.54, 29.51, 18.96, 34.05
a) Mean and Median
[tex]Mean = \displaystyle\frac{\text{Sum of all observations}}{\text{Total number of observation}}[/tex]
[tex]Mean =\displaystyle\frac{165.9}{6} = 27.65[/tex]
[tex]Median:\\\text{If n is odd, then}\\\\Median = \displaystyle\frac{n+1}{2}th ~term \\\\\text{If n is even, then}\\\\Median = \displaystyle\frac{\frac{n}{2}th~term + (\frac{n}{2}+1)th~term}{2}[/tex]
Sorted data: 18.96, 21.06, 25.78, 29.51, 34.05, 36.54
[tex]\text{Median} = \displaystyle\frac{25.78 +29.51}{2} = 27.645[/tex]
b) BMI above 30 is considered obese
Frequency of obese in the given sample = 2
Relative Frequency =
[tex]\displaystyle\frac{\text{Frequency of obese}}{\text{Total number}} = \frac{2}{6} = 0.3333 = 33.33\%[/tex]