Respuesta :

Answer:

[tex]a=\displaystyle\frac{1}{2}+\displaystyle\frac{\sqrt{3}}{2}i\\\\a=\displaystyle\frac{1}{2}-\displaystyle\frac{\sqrt{3}}{2}i[/tex]

[tex]b=\displaystyle\frac{1}{2}+\displaystyle\frac{\sqrt{3}}{2}i\\\\b=\displaystyle\frac{1}{2}-\displaystyle\frac{\sqrt{3}}{2}i[/tex]

Step-by-step explanation:

Recall that  

[tex]i=\sqrt{-1}[/tex]

so

[tex]i^2=-1[/tex]

we have then

[tex]a^2+b^2=-1\\\\a+b=1[/tex]

Isolating b in the second equation we get

b = 1-a

Replace this value in the first equation

[tex]a^2+(1-a)^2=-1\Rightarrow a^2+1-2a+a^2=-1\Rightarrow\\\\\Rightarrow 2a^2-2a+2=0\Rightarrow a^2-a+1=0[/tex]

Solving the quadratic equation we get two possible solutions for a  

[tex]a=\displaystyle\frac{1}{2}+\displaystyle\frac{\sqrt{3}}{2}i\\\\a=\displaystyle\frac{1}{2}-\displaystyle\frac{\sqrt{3}}{2}i[/tex]

Replacing these values in b=1-a, we get two possible solutions for b

[tex]b=\displaystyle\frac{1}{2}+\displaystyle\frac{\sqrt{3}}{2}i\\\\b=\displaystyle\frac{1}{2}-\displaystyle\frac{\sqrt{3}}{2}i[/tex]