Answer:
[tex]m_w=545.817\ g[/tex]
Explanation:
Given:
- mass of ice block, [tex]m_i=40\ g[/tex]
- initial temperature of ice block, [tex]T_i_i=-15^{\circ}C[/tex]
- initial temperature of water, [tex]T_i_w=15^{\circ}C[/tex]
- final temperature of mixture, [tex]T_f=8^{\circ}C[/tex]
- specific heat of ice, [tex]c_i=2.09\ J.g^{-1}[/tex]
- specific heat of water, [tex]c_w=4.186\ J.g^{-1}[/tex]
- Latent heat of fusion of water, [tex]L=335\ J.g^{-1}[/tex]
Now, assuming that there is no heat loss out of the mixture:
⇒ heat absorbed by the ice = heat rejected by the water
[tex]m_i(c_i\times \Delta T_i+L+c_w\times \Delta T_w)=m_w.c_w.\Delta T_w[/tex]
[tex]40(2.09\times (0-(-15))+335+4.186\times (8-0))=m_w\times 4.186\times (15-8)[/tex]
[tex]m_w=545.817\ g[/tex]