Respuesta :

Let x = 3secβ, then dx = 3secβtanβ

∫dx/√(x²-9) = ∫[(3secβtanβ)/(3tanβ)]dβ
                 = ∫secβdβ
                 = ln |tanβ - secβ| + c
                 = ln |√(x² - 9)/3 - x/3| + C
                 = ln |√(x² - 9)/x| + C