The atomic radius of metal X is 1.20 × 102 picometers (pm) and a crystal of metal X has a unit cell that is face-centered cubic. Calculate the density of metal X?(atomic weight = 42.3 g/mol)

Respuesta :

The formula for density is density = [tex] \frac{number of atoms in FCC * atomic weight}{ radius^{3}*Na} [/tex]. Substituting the given, the density is 162.69 g/cm3. 

Answer: The density of metal X is [tex]7.19g/cm^3[/tex]

Explanation:

We are given:

Atomic radius of metal X = [tex]1.20\times 10^2pm=120pm[/tex]

To calculate the edge length, we use the relation between the radius and edge length for FCC lattice:

[tex]a=2\sqrt{2}R[/tex]

Putting values in above equation, we get:

[tex]a=2\sqrt{2}\times 20=339.4pm[/tex]

To calculate the density of metal, we use the equation:

[tex]\rho=\frac{Z\times M}{N_{A}\times a^{3}}[/tex]

where,

[tex]\rho[/tex] = density

Z = number of atom in unit cell = 4  (FCC)

M = atomic mass of metal = 42.3 g/mol

[tex]N_{A}[/tex] = Avogadro's number = [tex]6.022\times 10^{23}[/tex]

a = edge length of unit cell = [tex]339.4pm=339.4\times 10^{-10}cm[/tex]    (Conversion factor:  [tex]1cm=10^{10}pm[/tex]  )

Putting values in above equation, we get:

[tex]\rho=\frac{4\times 42.3}{6.022\times 10^{23}\times (339.4\times 10^{-10})^3}\\\\\rho=7.19g/cm^3[/tex]

Hence, the density of metal X is [tex]7.19g/cm^3[/tex]