Answer:
The confidence interval is (24116.3878,24883.6122).
Step-by-step explanation:
We are given the following information in the question:
Population mean, [tex]\mu[/tex] = $23,500
Sample mean,[tex]\bar{x}[/tex] = $24,500
Sample standard deviation,s = $2,800
Sample size, n = 146
Confidence interval:
[tex]\bar{x} \pm t_{critical}\frac{s}{\sqrt{n}}[/tex]
Putting the values, we get,
[tex]t_{critical}\text{ at}~\alpha_{0.05} = \pm 1.655436[/tex]
[tex]24500 \pm 1.65543(\frac{2800}{\sqrt{146}} ) = 24500 \pm 383.6122 = (24116.3878,24883.6122)[/tex]
The confidence interval is (24116.3878,24883.6122).