The data below represent commute times​ (in minutes) and scores on a​ well-being survey. Complete parts​ (a) through​ (d) below. Commute Time​ (minutes), x 5 15 30 40 60 84 105 ​Well-Being Index​ Score, y 69.1 68.0 66.8 66.1 64.9 64.1 62.0 ​(a) Find the​ least-squares regression line treating the commute​ time, x, as the explanatory variable and the index​ score, y, as the response variable.

Respuesta :

Answer:

[tex]y=-0.065x+69.022[/tex]

Step-by-step explanation:

The given data table is

Time​ (in minutes) x             :  5      15        30      40     60       84     105

Well-Being Index​ Score y  : 69.1  68.0   66.8   66.1   64.9    64.1    62.0

We need to find the least-squares regression line treating the commute​ time, x, as the explanatory variable and the index​ score, y, as the response variable.

The general form of least-squares regression line

[tex]y=bx+a[/tex]            .... (1)

where, a is y-intercept and b is slope.

[tex]b=\frac{\sum_{i=1}^nx_iy_i-n\overline{x}\overline{y}}{\sum_{i=1}^nx_i^2-n\overline{x}^2}[/tex]

[tex]a=\overline{y}-b\overline{x}[/tex]

Using graphing calculator we get

[tex]b=0.0653469053052\approx 0.065[/tex]

[tex]a=69.0218001284\approx 69.022[/tex]

Substitute the values of a and b in equation (1).

[tex]y=-0.065x+69.022[/tex]

Therefore, the  least-squares regression line is y=-0.065x+69.022.

Ver imagen erinna