Respuesta :
Answer:
Part a)
[tex]L = 5.76 kg m^2/s[/tex]
Part b)
[tex]K = 92.16 J[/tex]
Part c)
[tex]\omega = 26.65 rad/s[/tex]
Part d)
[tex]L = 5.76 kg m^2/s[/tex]
Part e)
[tex]E = 76.74 J[/tex]
Part f)
[tex]\tau = 0.16 Nm[/tex]
Explanation:
Part a)
Initial angular momentum of the system of rod + disc is given as
[tex]L = I\omega [/tex]
here we know that
[tex]I_{disc} = \frac{1}{2}mR^2[/tex]
[tex]I_{disc} = \frac{1}{2}(9.8)(0.19)^2[/tex]
[tex]I_{disc} = 0.18 kg m^2[/tex]
[tex]I_{rod} = \frac{1}{12}mL^2[/tex]
[tex]I_{rod} = \frac{1}{12}(3)(0.38)^2[/tex]
[tex]I_{rod} = 0.0361 kg m^2[/tex]
so angular momentum is given as
[tex]L = 0.18(32) + 0.0361(0)[/tex]
[tex]L = 5.76 kg m^2/s[/tex]
Part b)
Initial rotational energy is given as
[tex]K = \frac{1}{2}I\omega^2[/tex]
[tex]K = \frac{1}{2}(0.18)(32^2) + \frac{1}{2}(0.0361)0[/tex]
[tex]K = 92.16 J[/tex]
Part c)
As we know that angular momentum is conserved so we will have
[tex]I_1\omega_1 = (I_1 + I_2)\omega_2[/tex]
[tex]0.18(32) = (0.18 + 0.0361)\omega[/tex]
[tex]\omega = 26.65 rad/s[/tex]
Part d)
Angular momentum is conserved so final angular momentum is same as initial angular momentum
[tex]L = 5.76 kg m^2/s[/tex]
Part e)
Final total energy
[tex]E = \frac{1}{2}(I_1 + I_2)\omega^2[/tex]
[tex]E = \frac{1}{2}(0.18 + 0.0361)26.65^2[/tex]
[tex]E = 76.74 J[/tex]
Part f)
Angular acceleration of the rod is given as
[tex]\alpha = \frac{\omega_f - \omega_i}{t}[/tex]
[tex]\alpha = \frac{26.65 - 0}{5.8}[/tex]
[tex]\alpha = 4.6 rad/s^2[/tex]
[tex]\tau = I\alpha[/tex]
[tex]\tau = 0.0361(4.6)[/tex]
[tex]\tau = 0.16 Nm[/tex]
1) The initial angular momentum of the rod and disk system is; L_total,i = 5.664 kg•m²/s
2) The initial rotational energy of the rod and disk system is; K_total = 90.624 J
3) The final angular velocity of the disk is; ω_d,f = 26.58 rad/s
4) The final angular momentum of the rod and disk system is; L_total,f = 5.664 kg•m²/s
5) The final rotational energy of the rod and disk system is; E_total = 75.277 J
6) The average torque exerted on the rod by the disk is; τ = 0.165 N.m
We are given;
Mass of disk; m1 = 9.8 kg
Mass of rod; m2 = 3 kg
Radius of disk; r = 0.19 m
Angular velocity of disk; ω_d = 32 rad/s
Length of rod; L = 0.38 m
1) Moment of inertia of disk is;
I_disk = ½m1•r²
I_disk = ½ × 9.8 × 0.19²
I_disk = 0.177 kg.m²
Moment of inertia of rod;
I_rod = m2•L²/12
I_rod = (3 × 0.38²)/12
I_rod = 0.0361 kg.m²
Formula for angular momentum is; L = Iω
Thus, initial angular momentum of the disk and rod system is;
L_total = (0.177 × 32) + (0.0361 × 0)
L_total,i = 5.664 kg•m²/s
2) Initial rotational kinetic energy of the disk and rod system is;
K_total = ½I_disk*(ω_d)² + ½I_rod*ω²
K_total = ½(0.177 × 32²) + 0
K_total = 90.624 J
3) To get the final angular velocity of the disk, we will use the formula;
I_disk*ω_d,i = (I_disk + I_rod)ω_d,f
Plugging in the relevant values;
0.177 × 32 = (0.177 + 0.0361)ω_d,f
ω_d,f = (0.177 × 32)/(0.177 + 0.0361)
ω_d,f = 26.58 rad/s
4) From conservation of momentum, we can say that final angular momentum. Thus;
L_total,f = 5.664 kg•m²/s
5) Final total energy is;
E_total = ½(I_disk + I_rod)(ω_d,f)²
E_total = ½(0.177 + 0.0361)(26.58)²
E_total = 75.277 J
6) Average torque was exerted on the rod by the disk is;
τ = I_rod × α
Where;
α = (ω_d,f - ω)/t
α = (26.58 - 0)/5.8
α = 4.58 rad/s²
Thus;
τ = 0.0361 × 4.58
τ = 0.165 N.m
Read more at; https://brainly.com/question/3393096