Respuesta :

Point (-13 , -4) must lie on the line whose endpoints are (-3 , 2) and (2 , 5)

Step-by-step explanation:

To solve the problem:

  • Find the slope of the line from its endpoints
  • Then find which point will give the same slope with each end point of the line

The formula of the slope is [tex]m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}[/tex] , where

[tex](x_{1},y_{1})[/tex] and [tex](x_{2},y_{2})[/tex] are two points on the line

∵ The endpoints of the line are (-3 , 2) and (2 , 5)

∴ [tex]x_{1}[/tex] = -3 and [tex]x_{2}[/tex] = 2

∴ [tex]y_{1}[/tex] = 2 and [tex]y_{2}[/tex] = 5

∵ [tex]m=\frac{5-2}{2--3}[/tex]

∴ [tex]m=\frac{3}{5}[/tex]

Let us find the slope of each point in the answer with the endpoint

of the line to find which point will give the same slope

→ Point (10 , 6)

∵ [tex]x_{1}[/tex] = -3 and [tex]x_{2}[/tex] = 10

∵ [tex]y_{1}[/tex] = 2 and [tex]y_{2}[/tex] = 6

∴ [tex]m=\frac{6-2}{10--3}[/tex]

∴ [tex]m=\frac{4}{13}[/tex]

∵ The slope ≠ [tex]\frac{3}{5}[/tex]

Point (10 , 6) does not lie on the line

→ Point (9 , 7)

∵ [tex]x_{1}[/tex] = -3 and [tex]x_{2}[/tex] = 9

∵ [tex]y_{1}[/tex] = 2 and [tex]y_{2}[/tex] = 7

∴ [tex]m=\frac{7-2}{9--3}[/tex]

∴ [tex]m=\frac{5}{12}[/tex]

∵ The slope ≠ [tex]\frac{3}{5}[/tex]

Point (9 , 7) does not lie on the line

→ Point (5 , 10)

∵ [tex]x_{1}[/tex] = -3 and [tex]x_{2}[/tex] = 5

∵ [tex]y_{1}[/tex] = 2 and [tex]y_{2}[/tex] = 10

∴ [tex]m=\frac{10-2}{5--3}[/tex]

∴ [tex]m=\frac{8}{8}=1[/tex]

∵ The slope ≠ [tex]\frac{3}{5}[/tex]

Point (5 , 10) does not lie on the line

→ Point (-13 , -4)

∵ [tex]x_{1}[/tex] = -3 and [tex]x_{2}[/tex] = -13

∵ [tex]y_{1}[/tex] = 2 and [tex]y_{2}[/tex] = -4

∴ [tex]m=\frac{-4-2}{-13--3}[/tex]

∴ [tex]m=\frac{-6}{-10}[/tex]

∴ [tex]m=\frac{3}{5}[/tex]

Let us check it with the other end (2 , 5)

∵ [tex]x_{1}[/tex] = 2 and [tex]x_{2}[/tex] = -13

∵ [tex]y_{1}[/tex] = 5 and [tex]y_{2}[/tex] = -4

∴ [tex]m=\frac{-4-5}{-13-2}[/tex]

∴ [tex]m=\frac{-9}{-15}[/tex]

∴ [tex]m=\frac{3}{5}[/tex]

∵ The slopes are equal [tex]\frac{3}{5}[/tex]

Point (-13 , -4) lies on the line

Point (-13 , -4) must lie on the line whose endpoints are (-3 , 2) and (2 , 5)

Learn more:

You can learn more about the linear equation in brainly.com/question/4152194

#Learn withBrainly