Answer:
The value of l = 3.64
Step-by-step explanation:
Consider the provided information.
μ=3.8 and σ=0.2mmol/l and n=4
As we know [tex]\mu_{\bar x}=\mu=3.8[/tex]
[tex]\sigma_{\bar x}=\frac{\sigma}{\sqrt{n}}=\frac{0.2}{\sqrt{4}}=0.1[/tex]
We have given α = 0.05
So by the standard normal table: [tex]Z_{0.05}=-1.645[/tex]
Compute [tex]P(\bar{X}<l)=0.05[/tex]
[tex]P(z<\frac{l-3.8}{0.1})=0.05[/tex]
[tex]\frac{l-3.8}{0.1}=-1.645[/tex]
[tex]l-3.8=-0.1645[/tex]
[tex]l=3.64[/tex]
Hence, the value of l = 3.64