Answer:
0.001410 mol/L is the concentration of the analyte in the sample.
Explanation:
Using Beer-Lambert's law :
Formula used :
[tex]A=\epsilon \times C\times l[/tex]
[tex]A=\log \frac{I_o}{I}[/tex]
[tex]\log \frac{I_o}{I}=\epsilon \times C\times l[/tex]
where,
A = absorbance of solution
C = concentration of solution = [tex]2.00\times 10^{-3}M[/tex]
l = path length = 1.00 cm
[tex]I_o[/tex] = incident light
[tex]I[/tex] = transmitted light
[tex]\epsilon[/tex] = molar absorptivity coefficient
Here we are given : [tex]\epsilon = 450 L/(mol cm)[/tex]
Transmittance of light = T = 23.2%
[tex]T=\frac{I}{I_o}\times 100[/tex]
[tex]23.2\%=\frac{I}{I_o}\times 100[/tex]
[tex]0.232=\frac{I}{I_o}[/tex]
[tex]I=0.232\times I_o[/tex]
[tex]A=\log \frac{I_o}{I}[/tex]
[tex]A=\log \frac{I_o}{0.232\times I_o}=0.6345[/tex]
[tex]A=\epsilon \times C\times l[/tex]
[tex]C=\frac{A}{\epsilon \times l}=\frac{0.6345}{450 L/(mol cm)\times 1 cm}[/tex]
C = 0.001410 mol/L
0.001410 mol/L is the concentration of the analyte in the sample.