The energy, E possessed by an object of a mass m kg traveling at a speed of vm/s 1/2 mv^2joules (a) express v interms of E and m (b) if the energy of a 50 kg mass is 4900 joules, how it is moving?

Respuesta :

Answer:

(a) [tex]v=\sqrt{\frac{2E}{m}}[/tex]

(b) It is moving at 14 m/s.

Explanation:

(a)

Given:

The energy, [tex]E[/tex], of an object moving with a velocity [tex]v[/tex] is given as:

[tex]E=\frac{1}{2}mv^{2}[/tex], where, [tex]m[/tex] is its mass.

Multiplying both sides by 2, we get

[tex]2E=2\times \frac{1}{2}mv^{2}\\2E=mv^{2}[/tex]

Now, divide both sides by [tex]m[/tex]

[tex]\frac{2E}{m}=\frac{mv^{2}}{m}\\\frac{2E}{m}=v^{2}[/tex]

Taking square root both sides, we get

[tex]\sqrt{\frac{2E}{m}}=\sqrt{v^{2}}\\v=\sqrt{\frac{2E}{m}}[/tex]

Therefore, [tex]v[/tex] in terms of [tex]E[/tex] and [tex]m[/tex] is given as:

[tex]v=\sqrt{\frac{2E}{m}}[/tex]

(b)

Using the above formula, [tex]v=\sqrt{\frac{2E}{m}}[/tex]

Plug in 4900 joules for [tex]E[/tex] and 50 kg for [tex]m[/tex]. Solve for [tex]v[/tex]. This gives,

[tex]v=\sqrt{\frac{2(4900)}{50}}=14\textrm{ m/s}[/tex]

Therefore, it is moving with a speed of 14 m/s.