69 points!!!

What are the solutions of the following system?
{x² + y² = 25
{ 2x+y=-5

A(0,-5) and (-5,5)
B (0,-5) and (5, -15)
C(0, -5) and (-4,3)
D(0,-5) and (4, -13)

69 points What are the solutions of the following system x y 25 2xy5 A05 and 55 B 05 and 5 15 C0 5 and 43 D05 and 4 13 class=

Respuesta :

Answer:

C)  The solution for the given system of equations are A(0,-5) and B(-4,3)

Step-by-step explanation:

The given system of equation are : [tex]x^{2}  + y^{2}  = 25\\2x  + y  = -5[/tex]

from equation 2, we get   y = -5 - 2x .

Put the above value of y in the equation (1).

We get: [tex]x^{2}  + y^{2}  = 25  \implies x^{2}  + (-5-2x)^{2}  = 25[/tex]

By ALGEBRAIC IDENTITY:

[tex](a+b)^{2}   = a^{2}  +  b^{2}  + 2ab\\ (-5-2x)^{2} = (-5)^{2}  +  (-2x)^{2}  + 2(-5)(-2x)[/tex]

or, [tex]x^{2}  + (-5-2x)^{2}  = 25  \implies x^{2} + (25  +  4x^{2}  + 20x)  = 25[/tex]

or, [tex]5x^{2}  + 20x = 0  \implies x(5x + 20) = 0[/tex]

⇒ x = 0 or,   x  = -20/5 = -4

So, the possible values for x are: x  = 0 or  x  = -4

If x  = 0, y = -5-2x = -5-2(0) = -5

and if x = -4, y = -5 -2(-4)   = -5 + 8  = 3

Hence, the solution for the given system of equations are A(0,-5) and B(-4,3)

Answer:

C.

Step-by-step explanation:

on edge 2020 :))