Answer:
Height is [tex]12\sqrt{2}[/tex].
Step-by-step explanation:
Given:
Area of the parallelogram is, [tex]A=8\sqrt{90}[/tex]
Base of the parallelogram is, [tex]b=2\sqrt{5}[/tex]
Let [tex]h[/tex] be the height.
Therefore, area of the parallelogram is given as:
[tex]A=b\times h\\8\sqrt{90}=2\sqrt{5}\times h\\h=\frac{8\sqrt{90}}{2\sqrt{5}}\\h=4\sqrt{\frac{90}{5}}\\h=4\sqrt{18}\\h=4\sqrt{2\times 9}\\h=4\times 3\sqrt{2}=12\sqrt{2}[/tex]
Therefore, the height of the parallelogram is [tex]12\sqrt{2}[/tex].