The first four terms are 32,29,26,23
Step-by-step explanation:
Given sequence is:
[tex]a_n=32+(n-1)(-3)\\[/tex]
We will put n=1,2,3,4
Putting n=1 in formula of sequence
[tex]a_1=32+(1-1)(-3)\\=32+(0)(-3)\\=32+0\\=32[/tex]
Putting n=2
[tex]a_2=32+(2-1)(-3)\\=32+(1)(-3)\\=32-3\\=29[/tex]
Putting n=3
[tex]a_3=32+(3-1)(-3)\\=32+(2)(-3)\\=32-6\\=26[/tex]
Putting n=4
[tex]a_4=32+(4-1)(-3)\\=32+(3)(-3)\\=32-9\\=23[/tex]
The first four terms are 32,29,26,23
Keywords: Arithmetic sequence, Recursive Formula
Learn more about arithmetic sequence at:
#LearnwithBrainly