A polynomial ppp has zeros when x=-2x=−2x, equals, minus, 2, x=\dfrac13x= 3 1 ​ x, equals, start fraction, 1, divided by, 3, end fraction, and x=3x=3x, equals, 3. What could be the equation of ppp?

Respuesta :

Answer:

Polynomial equation is, [tex]p=(x+2)(3x-1)(x-3)=3x^3-4x^2-17x+6[/tex]

Step-by-step explanation:

Given:

The zeros of the polynomial, [tex]p[/tex], are  [tex] x=-2,\frac{1}{3}, 3[/tex].

Therefore,

[tex]x= -2\\(x+2)=0[/tex]

So, [tex](x+2)[/tex] is a factor of the polynomial.

[tex]x=\frac{1}{3}\\3x=1\\3x-1=0[/tex]

So, [tex](3x-1)[/tex] is a factor of the polynomial.

[tex]x=3\\x-3=0[/tex]

So, [tex](x-3)[/tex] is also a factor of the polynomial.

Therefore, a polynomial can be expressed in terms of the product of its factors.

Thus, [tex]p=(x+2)(3x-1)(x-3)[/tex]

Expanding [tex](x+2)\textrm{ and }(3x-1)[/tex], we get

[tex](x+2)(3x-1)=3x^2-x+6x-2=3x^2+5x-2[/tex]

Now, expanding [tex](3x^2+5x-2)\textrm{ and }(x-3)[/tex], we get

[tex](3x^2+5x-2)(x-3)=3x^3-9x^2+5x^2-15x-2x+6=3x^3-4x^2-17x+2[/tex]

Therefore, the polynomial could be [tex]p=(x+2)(3x-1)(x-3)=3x^3-4x^2-17x+6[/tex]