The volume of a sample of gas at 0 degrees Celsius is 100 liters. If the volume of the gas is increased to 200 liters at constant pressure, what is the new temperature of the gas (in Kelvin)? Group of answer choices 273 K 100 K 0 K 546 K

Respuesta :

Answer:

The answer to your question is: T = 546°K

Explanation:

V1 = 100 l

T1 = 0°C = 273°K

V2 = 200 l

T2 = ?

Pressure = constant

Formula

Charles law  relates volume vs temperature

                                            [tex]\frac{V1}{T1} = \frac{V2}{T2}[/tex]

                                            [tex]T2 = \frac{V2T1}{V1}[/tex]

Substitution

                                             [tex]T2 = \frac{(200)(273)}{100}[/tex]

                                             [tex]T2 = \frac{54600}{100}[/tex]

Result

                                                    T2 = 546°K                      

                                     

Oseni

The new temperature of the gas will be 546 K

Charles's law

According to Charles, the volume of a gas is directly proportional to its temperature, provided that the pressure remains unchanged.

Mathematically: V1/T1/= V2/T2

In this case, V1 = 100 L, T1 = 273 K, V2 = 200.

T2 = V2T1/V1

                      = 200 x 273/100

                             = 546 K

More on Charles' law can be found here; https://brainly.com/question/3491421