40. Identify the special angle pair name for (angle)10 and (angle)6 .

41. Given l || m, m ( angle ) 2 = 72, find the m (angle) 3

42. Given l || m, m (angle) 9 = 9x + 5, and m (angle) 5 = 3x + 37, find the value of x.

43. Given m (angle)10 = 5x + 2, and m (angle) 6 = 3c + 28, find the value of x so that l || m

40 Identify the special angle pair name for angle10 and angle6 41 Given l m m angle 2 72 find the m angle 3 42 Given l m m angle 9 9x 5 and m angle 5 3x 37 find class=

Respuesta :

Answer:

40. Alternate exterior angles.

41. [tex]m\angle 3=108[/tex].

42. [tex]x=4[/tex]

43. [tex]x=13[/tex]

Step-by-step explanation:

Given:

From the figure, l and m are 2 lines and p and n are the transversals on the 2 lines.

Question 40:

[tex]m\angle 10\textrm{ and }m\angle 6[/tex] lie exterior to lines l and m are also alternate to each other. Therefore, they are called as a pair of alternate exterior angles.

Question 41:

If lines l || m, then the angles [tex]m\angle 2\textrm{ and }m\angle 3[/tex] are a pair of supplementary angles.

Therefore, the sum of angles 2 and 3 is equal to 180.

[tex]m\angle 2+m\angle 3=180\\72+m\angle 3=180\\m\angle 3=180-72=108[/tex]

Therefore, [tex]m\angle 3=108[/tex].

Question 42:

If lines l || m, then the angles [tex]m\angle 9\textrm{ and }m\angle 5[/tex] are a pair of alternate interior angles and equal to each other.

Therefore, [tex]m\angle 9=m\angle 5[/tex]

[tex]9x+5=x+37\\9x-x=37-5\\8x=32\\x=\frac{32}{8}=4[/tex]

Therefore, [tex]x=4[/tex].

Question 43:

If lines l || m, then the angles [tex]m\angle 10\textrm{ and }m\angle 6[/tex] are a pair of alternate exterior angles and equal to each other.

Therefore, [tex]m\angle 10=m\angle 6[/tex]

[tex]5x+2=3x+28\\5x-3x=28-2\\2x=26\\x=\frac{26}{2}=13[/tex]

Therefore, [tex]x=13[/tex].