Answer:
[tex]\Delta P = -1.14 \hat i + 0.33\hat j[/tex]
Part b)
[tex]v_f = 0.03 \hat i + 1.79 \hat j[/tex]
Explanation:
Part a)
As we know that impulse is due to the force applied for small time due to which momentum is changed
so we will have
[tex]\Delta P = F\Delta t[/tex]
so we will have
[tex]F = -380 \hat i + 110 \hat j[/tex]
also we know that
[tex]\Delta t = 3 ms[/tex]
now impulse is given as
[tex]\Delta P = (-380\hat i + 110 \hat j)(3 \times 10^{-3})[/tex]
[tex]\Delta P = -1.14 \hat i + 0.33\hat j[/tex]
Part b)
As we know that
[tex]\Delta P = m(v_f - v_i)[/tex]
[tex](-1.14 \hat i + 0.33 \hat j) = (\frac{0.560}{9.81})(v_f - (20\hat i - 4\hat j))[/tex]
[tex]-19.97 \hat i + 5.79\hat i + 20 \hat i - 4\hat j = v_f[/tex]
[tex]v_f = 0.03 \hat i + 1.79 \hat j[/tex]