Answer: $ 5,389.72
Step-by-step explanation:
This is an annuity question.
Using the formula:
P = E [ [tex]\frac{1 - (1+i)^{-n} }{i}[/tex] ]
E = $150
i = 0.15/12 , since it is compounded monthly
ans P is the original price
substituting into the formula , we have
P = 150 [ [tex]\frac{1 - (1+\frac{0.15}{12}) ^{-48} }{\frac{0.15}{12} }[/tex] ]
P = 150 [ [tex]\frac{1 - 0.550856488}{0.0125}[/tex] ]
P = 150 [ [tex]\frac{0.449143511}{0.0125}[/tex] ]
P = 150 [ 35.93148088]
P = $ 5,389.72