Respuesta :
Answer :
(2) The % of Cl in the sample is 56.8 %
(3) The concentration of Cl in ppm for the river water is 33.2 mg/L
Explanation :
Part 2 :
First we have to calculate the moles of [tex]Ag^+[/tex]
[tex]\text{Moles of }Ag^+=Concentration\times Volume=0.01M\times 40.00mL=0.40mmol[/tex]
The chemical reaction will be:
[tex]Ag^++Cl^-\rightarrow AgCl[/tex]
From the reaction we conclude that,
As, 1 mole of [tex]Ag^+[/tex] react with 1 mole of [tex]Cl^-[/tex]
So, 0.40 mmol of [tex]Ag^+[/tex] react with 0.40 mmol of [tex]Cl^-[/tex]
Now we have to calculate the moles of [tex]Cl^-[/tex] ion in 250 mL.
As, 25.00 mL contains moles of [tex]Cl^-[/tex] ion = 0.40 mmol
So, 250.0 mL contains moles of [tex]Cl^-[/tex] ion = [tex]\frac{250.0}{25.00}\times 0.40=4mmol[/tex]
Now we have to calculate the mass of [tex]Cl^-[/tex] ion.
[tex]\text{ Mass of }MgO=\text{ Moles of }MgO\times \text{ Molar mass of }MgO[/tex]
Molar mass of [tex]Cl^-[/tex] ion = 35.5 g/mole
[tex]\text{ Mass of }MgO=(4mmol)\times (35.5g/mole)=142mg=0.142g[/tex]
Now we have to calculate the % of Cl in the sample.
[tex]\% \text{ of Cl in sample}=\frac{0.142g}{0.25g}\times 100=56.8\%[/tex]
Hence, the % of Cl in the sample is 56.8 %
Part 3 :
First we have to calculate the moles of [tex]Ag^+[/tex]
[tex]\text{Moles of }Ag^+=Concentration\times Volume=0.01005M\times 9.30mL=0.0935mmol[/tex]
The chemical reaction will be:
[tex]Ag^++Cl^-\rightarrow AgCl[/tex]
From the reaction we conclude that,
As, 1 mole of [tex]Ag^+[/tex] react with 1 mole of [tex]Cl^-[/tex]
So, 0.0935 mmol of [tex]Ag^+[/tex] react with 0.0935 mmol of [tex]Cl^-[/tex]
Now we have to calculate the mass of [tex]Cl^-[/tex] ion.
[tex]\text{ Mass of }MgO=\text{ Moles of }MgO\times \text{ Molar mass of }MgO[/tex]
Molar mass of [tex]Cl^-[/tex] ion = 35.5 g/mole
[tex]\text{ Mass of }MgO=(0.0935mmol)\times (35.5g/mole)=3.32mg[/tex]
Now we have to calculate the concentration of Cl in ppm.
[tex]\text{Concentration of Cl in ppm}=\frac{3.32mg}{0.1L}=33.2mg/L[/tex]
Hence, the concentration of Cl in ppm for the river water is 33.2 mg/L