Answer: 3424.28
Step-by-step explanation:
Given data : 378, 361, 350, 375, 200, 391, 375, 368, 321
Number of data values = 9
Mean :[tex]\overline{x}=\dfrac{\sum^n_{i=1} x_i}{n}[/tex]
[tex]\\\\=\dfrac{378+361+350+375+200+391+375+368+321}{9}\\\\=\dfrac{3119}{9}\approx346.56[/tex]
Variance = [tex]\dfrac{\sum^n_{i=1} (x_i-\overline{x})^2}{n-1}[/tex]
[tex]\sum^n_{i=1} (x_i-\overline{x})^2 = (31.44)^2+(14.44)^2+(3.44)^2+(28.44)^2+(-146.56)^2+(44.44)^2+(28.44)^2+(21.44)^2+(-25.56)^2\\\\=27394.2224[/tex]
Variance = [tex]\dfrac{27394.2224}{8}=3424.2775\approx3424.28[/tex]