Respuesta :
Answer : The moles of [tex]Br_2[/tex] at equilibrium is 0.274 mole.
Solution :
First we have to calculate the concentration of [tex]H_2[/tex] and [tex]Br_2[/tex].
Concentration of [tex]H_2[/tex] = [tex]\frac{Moles}{Volume}=\frac{0.682mole}{2.00L}=0.341M[/tex]
Concentration of [tex]Br_2[/tex] = [tex]\frac{Moles}{Volume}=\frac{0.440mole}{2.00L}=0.220M[/tex]
Concentration of [tex]H_2[/tex] at equilibrium = [tex]\frac{Moles}{Volume}=\frac{0.516mole}{2.00L}=0.258M[/tex]
The given equilibrium reaction is,
[tex]H_2(g)+Br_2(g)\rightleftharpoons 2HBr(g)[/tex]
Initially conc. 0.341 0.220 0
At equilibrium. (0.341-x) (0.220-x) 2x
The expression of [tex]K_c[/tex] will be,
[tex]K_c=\frac{[HBr]^2}{[H_2][Br_2]}[/tex]
As, the concentration of [tex]H_2[/tex] at equilibrium = 0.258 M
That means,
0.341 - x = 0.258
x = 0.341 - 0.258
x = 0.083 M
The concentration of [tex]Br_2[/tex] at equilibrium = (0.220-x) = (0.220-0.083) = 0.137 M
Now we have to calculate the moles of [tex]Br_2[/tex] at equilibrium.
[tex]\text{Concentration of }Br_2=\frac{\text{Moles of }Br_2}{\text{Volume of solution}}[/tex]
[tex]0.137M=\frac{\text{Moles of }Br_2}{2.00L}[/tex]
[tex]\text{Moles of }Br_2=0.137M\times 2.00L[/tex]
[tex]\text{Moles of }Br_2=0.274mole[/tex]
Therefore, the moles of [tex]Br_2[/tex] at equilibrium is 0.274 mole.