Answer:
b) [tex]F(x)=1-x^{-3}[/tex]
c) 0.0156
Step-by-step explanation:
Let's call X : '' Particle size (in micrometers) ''
X is a random variable
The distribution function for X is :
[tex]f(x)=3x^{-4} \\[/tex]
For x > 1
f(x) = 0, elsewhere
For a) the condition for f(x) to be a valid density function is that
the integral between -∞ and ∞ of f(x) must be equal to 1.
For the integral I change ∞ for j so ∞ = j
Also for the integral I change -∞ for k so k = -∞
[tex]\int\limits^j_k {f(x)} \, dx =1[/tex]
[tex]\int\limits^j_1 {3x^{-4} } \, dx =\\[/tex]
[tex]3\frac{j^{-3}}{-3} -3\frac{1^{-3}}{-3} =1[/tex]
Then f(x) is a valid density function
b) To find F(x) we must integrate between -∞ and x the function f(t)
We calculate f(t) changing x by t in the f(x) function
[tex]x = t \\f(x) =3x^{-4} \\f(t)=3t^{-4}[/tex]
Now we integrate
[tex]\int\limits^x_1 {3t^{-4} } \, dt =-x^{-3}+1[/tex]
[tex]F(x)=1-x^{-3}[/tex]
c) P(X>4)
P(X>4) = 1 - P(X≤4)
P(X>4) = 1 - F(4)
[tex]P(X>4) = 1 - (1-4^{-3})=4^{-3}=0.0156[/tex]