An optical inspection system is used to distinguish among different part types. The probability of a correct classification of any part is 0.96. Suppose that three parts are inspected and that the classifications are independent. Let the random variable X denote the number of parts that are correctly classified. Determine the probability mass function of X. Round your answers to four decimal places (e.g. 98.7654).

Respuesta :

Answer:

Probability Mass Function:

   x:          0                         1                            2                          3

P(x):          0.000064          0.004608             0.115902             0.884736

Step-by-step explanation:

We are given the following information:

We treat correct classification  as a success.

P(correct classification) = 0.96

Then the number of classification follows a binomial distribution, where

[tex]P(X=x) = \binom{n}{x}.p^x.(1-p)^{n-x}[/tex]

where n is the total number of observations, x is the number of success, p is the probability of success.

Now, we are given n = 3 and x = 0, 1, 2, 3

We have to evaluate:

[tex]P(x = 0)\\= \binom{3}{0}(0.96)^0(1-0.96)^3\\=0.000064[/tex]

[tex]P(x = 1)\\= \binom{3}{1}(0.96)^1(1-0.96)^2\\=0.004608[/tex]

[tex]P(x = 2)\\= \binom{3}{2}(0.96)^2(1-0.96)^1\\=0.115902[/tex]

[tex]P(x = 3)\\= \binom{3}{3}(0.96)^3(1-0.96)^0\\=0.884736[/tex]

PMF:

   x:          0                         1                            2                          3

P(x):          0.000064          0.004608             0.115902             0.884736