Answer: [tex]1.03\times 10^4K[/tex]
Explanation:
Using Weins displacement law:
[tex]\lambda _{max}=\frac{b}{T}[/tex]
where [tex]\lambda _{max}[/tex] = wavelength = [tex]2.80\times 10^{-7}m[/tex]
b = constant =[tex]2.897\times 10^{-3}mK[/tex]
T = Temperature in Kelvin = ?
Putting the values we get:
[tex]2.80\times 10^{-7}m=\frac{2.897\times 10^{-3}mK}{T}[/tex]
[tex]T=1.03\times 10^4K[/tex]
Thus the temperature of the blackbody will be [tex]1.03\times 10^4K[/tex]