Titan has a radius of 2600.0 km and a mean density of 2.1 g/cm3. Earth's Moon has a radius of 1737.0 km and a mean density of 3.4 g/cm3. What is the ratio of gravitational acceleration on Titan compared to that on the Moon? The gravitational constant is G = 6.67 × 10-11 m3 kg-1 s-2.

Respuesta :

Answer:

[tex]\dfrac{g_1}{g_2}=0.92[/tex]

Explanation:

It is given that,

The radius of Titan, [tex]r_1=2600\ km=26\times 10^5\ m[/tex]

Density of Titan, [tex]d_1=2.1\ g/cm^3=2100\ kg/m^3[/tex]

Radius of moon, [tex]r_2=1737\ km=1737\times 10^3\ m[/tex]

Density of the moon, [tex]d_2=3.4\ g/cm^3=3400\ kg/m^3[/tex]

Value of gravitational constant, [tex]G=6.67\times 10^{-11}\ m^3kg^{-1}s^{-2}[/tex]

The gravitational acceleration is given by :

[tex]g=\dfrac{GM}{r^2}[/tex]

[tex]g=\dfrac{G\times d\times \pi r^2}{r^2}[/tex]

Let g₁ and g₂ are the gravitational acceleration on Titan and on the moon respectively. So,

[tex]\dfrac{g_1}{g_2}=\dfrac{\dfrac{G\times d_1\times (4/3)\pi r_1^3}{r_1^2}}{\dfrac{G\times d_2\times (4/3)\pi r_2^3}{r_2^2}}[/tex]

[tex]\dfrac{g_1}{g_2}=\dfrac{d_1r_1}{d_2r_2}[/tex]

[tex]\dfrac{g_1}{g_2}=\dfrac{2100\times 26\times 10^5}{3400\times 1737\times 10^3}[/tex]

[tex]\dfrac{g_1}{g_2}=0.92[/tex]

So, the ratio of gravitational acceleration on Titan compared to that on the Moon is 0.92 : 1. Hence, this is the required solution.