Assume that x and y are both differentiable functions of t and find the required values of dy/dt and dx/dt. y = √x , (a) Find dy/dt, given x = 4 and dx/dt = 5. dy/dt = _______ (b) Find dx/dt, given x = 49 and dy/dt = 3. dx/dt = __________

Respuesta :

Answer: a) [tex]\dfrac{5}{4}[/tex] b) 42

Step-by-step explanation:

Since we have given that

[tex]y=\sqrt{x}[/tex]

We need to find the

a) (a) Find dy/dt, given x = 4 and dx/dt = 5.

[tex]\dfrac{dy}{dt}=\dfrac{1}{2\sqrt{x}}\dfrac{dx}{dt}\\\\\dfrac{dy}{dt}=\dfrac{1}{2\sqrt{4}}\times 5\\\\\dfrac{dy}{dt}=\dfrac{1}{4}\times 5\\\\\dfrac{dy}{dt}=\dfrac{5}{4}[/tex]

(b) Find dx/dt, given x = 49 and dy/dt = 3.

[tex]\dfrac{dy}{dt}=\dfrac{1}{2\sqrt{x}}\dfrac{dx}{dt}\\\\3=\dfrac{1}{2\sqrt{49}}\times \dfrac{dx}{dt}\\\\3=\dfrac{1}{14}\times \dfrac{dx}{dt}\\\\\dfrac{dx}{dt}=14\times 3=42[/tex]

Hence, a) [tex]\dfrac{5}{4}[/tex] b) 42