Respuesta :

Option 2

ANSWER:  

The Standard deviation of (7, 9, 10, 11, 13) is 2.

SOLUTION:

Given, data set is (7, 9, 10, 11, 13)

Standard deviation [tex]\sigma=\sqrt{\frac{\Sigma(\mathrm{xi}-\mu) 2}{n}}[/tex]

Where, [tex]\mathrm{x}_{\mathrm{i}}[/tex] is element of data set

[tex]\mu[/tex]  is mean of data set

n is total number observations.

Now, mean [tex]\mu=\frac{\text {sum of observations}}{\text {number of observations}}[/tex]

[tex]=\frac{7+9+10+11+13}{5}[/tex]

[tex]=\frac{50}{5}[/tex]

= 10

So, the mean of data set is 10.

Now, standard deviation [tex]\sigma=\sqrt{\frac{(7-10) 2+(9-10) 2+(10-10) 2+(11-10) 2+(13-10) 2}{5}}[/tex]

[tex]\begin{array}{l}{\sigma=\sqrt{\frac{(-3) 2+(-1) 2+(0) 2+(1) 2+(3) 2}{5}}} \\ {\sigma=\sqrt{\frac{9+1+1+9}{5}}} \\ {\sigma=\sqrt{\frac{20}{5}}} \\ {\sigma=2}\end{array}[/tex]

So, the standard deviation is 2.

Hence, the second option is right, i.e. standard deviation is 2.

Answer: 2

Step-by-step explanation: