A sample of lake water at 25°C is analyzed and the following parameters are found: total alkalinity = 6.2 x 10-4 M phenolphthalein alkalinity = 1.0 X 10PM pH = 7.6 hardness = 30.0 mg/L [Mg²+] = 1.0 x 10-4 M Extract all possible single-ion concentrations that you can by combining one or more of these data. Also determine whether or not the water is at equi- librium with respect to the carbonate-bicarbonate system and whether or not it is saturated with calcium carbonate.

Respuesta :

Explanation:

The given data is as follows.

       Temperature = [tex]25^{o}C[/tex],     Total alkalinity = [tex]6.2 \times 10^{-4}[/tex] M

      Alkalinity of phenolphthalein = [tex]1 \times 10^{-5}[/tex] M

       pH = 7.6,          Hardness = 30 mg/L

       [tex][Mg^{2+}] = 1 \times 10^{-4}[/tex] M

It is known that total alkalinity is as follows.

       Total alkalinity = [tex][HCO^{-}_{3}] + [CO^{2-}_{3}] + [OH^{-}] - [H^{+}][/tex]

Since,    pH = 7.6. Hence, concentration of hydrogen ions will be calculated as follows.

                          pH = [tex]-log [H^{+}][/tex]

                          7.6 = [tex]-log [H^{+}][/tex]

                   [tex][H^{+}][/tex] = antilog (-7.6)        

                                  = [tex]2.51 \times 10^{-8}[/tex] M

As,    pH + pOH = 14

               pOH = 14 - pH

                        = 14 - 7.6

                        = 6.4

So,    [tex][OH^{-}] = 10^{-6.4}[/tex]

                      = [tex]3.98 \times 10^{-7} M[/tex]

Phenolphthalein alkalinity = [tex][CO^{2-}_{3}][/tex]

     [tex][HCO^{-}_{3}][/tex] = Total alkalinity - 2[CO^{2-}_{3}] - [OH^{-}] + [H^{+}][/tex]

                        = [tex]6.2 \times 10^{-4} - 2(1 \times 10^{-5}) - (3.98 \times 10^{-7}) + (2.51 \times 10^{-8})[/tex]

                         = [tex]5.9 \times 10^{-4} M[/tex]

[tex][Mg^{2+}] = 1 \times 10^{-4} M[/tex] = [tex]24 \times 10^{-4} g/L[/tex]

          [tex][Mg^{2+}][/tex] = 2.4 mg/L

Ratio of molar mass of [tex]Ca^{2+}[/tex] and [tex][Mg^{2+}][/tex] with [tex]CaCO_{3}[/tex] is as follows.

         [tex]\frac{M_{CaCO_{3}}}{M_{Ca}}[/tex] = [tex]\frac{100}{40}[/tex] = 25

         [tex]\frac{M_{CaCO_{3}}}{M_{Mg}}[/tex] = [tex]\frac{100}{24}[/tex] = 4.2

Total hardness = [tex]2.5[Ca^{2+}] + 4.2 [Mg^{2+}][/tex]

        [tex][Ca^{2+}] = \frac{\text{total hardness - 4.2(2.4)}}{2.5}[/tex]

                         = [tex]1.99 \times 10^{-4} mol/L[/tex]

            [tex]CaCO_{3} \rightarrow Ca^{2+} CO^{2-}_{3}[/tex]

 [tex][Ca^{2+}][CO^{2-}_{3}][/tex] = [tex](1.99 \times 10^{-4}) \times (1 \times 10^{-5})[/tex]        

                                  = [tex]1.99 \times 10^{-9}[/tex]

       [tex]K_{sp}[/tex] of [tex]CaCO_{3}[/tex] = [tex]3.36 \times 10^{-9}[/tex]

Since,    [tex][Ca^{2+}][CO^{2-}_{3}][/tex] > [tex]K_{sp}[/tex]

Hence, the water is slightly unsaturated with [tex]CaCO_{3}[/tex].