Answer:
It should obtain at least: $ 17,363,986.04
Explanation:
we have several cash flow of different magnitude. As thisi s a finite sum of cash flow, we solve using present value of each lump sum using our WACC as discount rate:
[tex]\frac{Nominal}{(1 + rate)^{time} } = PV[/tex]
[tex]\frac{8,500,000}{(1 + 0.15)^{1} } = PV[/tex]
[tex]\frac{7,500,000}{(1 + 0.15)^{2} } = PV[/tex]
[tex]\frac{5,000,000}{(1 + 0.15)^{3} } = PV[/tex]
[tex]\frac{2,000,000}{(1 + 0.15)^{4} } = PV[/tex]
[tex]\frac{500,000}{(1 + 0.15)^{5} } = PV[/tex]
Year Nominal Cash Flow Present Value
1 8,500,000.00 7,391,304.35
2 7,000,000.00 5,293,005.67
3 5,000,000.00 3,287,581.16
4 2,000,000.00 1,143,506.49
5 500,000.00 248,588.37
Total Present value 17,363,986.04