Answer:
v = √2G [tex]M_{earth}[/tex] / R
Explanation:
For this problem we use energy conservation, the energy initiated is potential and kinetic and the final energy is only potential (infinite r)
Eo = K + U = ½ m1 v² - G m1 m2 / r1
Ef = - G m1 m2 / r2
When the body is at a distance R> Re, for the furthest point (r2) let's call it Rinf
Eo = Ef
½ m1v² - G m1 [tex]M_{earth}[/tex] / R = - G m1 [tex]M_{earth}[/tex] / R
v² = 2G [tex]M_{earth}[/tex] (1 / R - 1 / Rinf)
If we do Rinf = infinity 1 / Rinf = 0
v = √2G [tex]M_{earth}[/tex] / R
Ef = = - G m1 m2 / R
The mechanical energy is conserved
Em = -G m1 [tex]M_{earth}[/tex] / R
Em = - G m1 [tex]M_{earth}[/tex] / R
R = int ⇒ Em = 0