An object is thrown vertically and has a speed of 25 m/s when it reaches 1/4 of its maximum height above the ground (assume it starts from ground level). What is the original launch speed of the object?

Respuesta :

Answer:

[tex]v_{i} =28.86\frac{ft}{s}[/tex]

Explanation:

Conceptual analysis

We apply the kinematic formula for an object that moves vertically upwards:

[tex](v_{f} )^{2} =(v_{i} )^{2} -2*g*y[/tex]

Where:

[tex]v_{f}[/tex] : final speed in ft/s

[tex]v_{i}[/tex] : initial speed in ft/s

g: acceleration due to gravity in ft/s²

y: vertical position at any time in ft

Known data

For [tex]v_{f} = 25\frac{ft}{s}[/tex] ,[tex]y=\frac{1}{4} h[/tex]; where h is the maximum height

for y=h,  [tex]v_{f} =0[/tex]

Problem development

We replace  [tex]v_{f} = 25\frac{ft}{s}[/tex]  , [tex]y=\frac{1}{4} h (ft)[/tex] in the formula (1),

[[tex]25^{2} =(v_{i} )^{2} -2*g*\frac{h}{4}[/tex]   Equation (1)

in maximum height(h): [tex]v_{f} =0[/tex], Then we replace in formula (1):

[tex]0=(v_{i} )^{2} - 2*g*h[/tex]

[tex]2*g*h=(v_{i} )^{2}[/tex]

[tex]h=\frac{(v_{i})^{2}  }{2g}[/tex]   Equation(2)

We replace (h) of Equation(2) in the  Equation (1) :

[tex]25^{2} =(v_{i} )^{2} -2g\frac{\frac{(v_{i})^{2}  }{2g} }{4}[/tex]

[tex]25^{2} =(v_{i} )^{2} -\frac{(v_{i})^{2}  }{4}[/tex]

[tex]25^{2} =\frac{3}{4} (v_{i} )^{2}[/tex]

[tex]v_{i} =\sqrt{\frac{25^{2}*4 }{3} }[/tex]

[tex]v_{i} =28.86\frac{ft}{s}[/tex]