Answer:
$7995.85
Step-by-step explanation:
We will use simple interest formula to solve our given problem.
[tex]A=P(1+rt)[/tex], where,
A = Amount after t years,
P = Principal amount,
r = Annual interest rate in decimal form,
t = Time in years.
[tex]r=6.5\%=\frac{6.5}{100}=0.065[/tex]
[tex]t=\text{141 days}=\frac{141}{365}\text{ year}[/tex]
[tex]A=\$78001+0.065\times \frac{141}{365})[/tex]
[tex]A=\$7800(1+0.065\times 0.38630136986)[/tex]
[tex]A=\$7800(1+0.025109589041)[/tex]
[tex]A=\$7800(1.025109589041)[/tex]
[tex]A=\$7995.85479[/tex]
[tex]A\approx \$7995.85[/tex]
Therefore, Judy will will pay back on January 20: $7995.85.