Answer:
a.Converge
b.Diverge
Step-by-step explanation:
We are given that
[tex]A_n=\frac{6n}{-4n+9}[/tex]
[tex]\lim_{n\rightarrow \infty}A_n=\lim_{n\rightarrow \infty}\frac{6n}{-4n+9}=\frac{6n}{n(-4+\frac{9}{n})}[/tex]
[tex]\lim_{n\rightarrow \infty}\frac{6}{-4+\frac{9}{n}}=\frac{6}{-4}=\frac{-3}{2}[/tex]
Because [tex]\frac{9}{\infty}=0[/tex]
Hence, sequence An converges to [tex]\frac{-3}{2}[/tex] when n tends to infinity or - infinity.
[tex]\sum_{n=1}^{\infty}An=\sum_{n=1}^{\infty}\frac{6n}{-4n+9}[/tex]=diverges
Necessary condition for a series to converge :
[tex] an\rightarrow 0[/tex] when n tends to infinity .
But [tex]A_n[/tex] tends to [tex]\frac{-3}{2}[/tex]when n tends to infinity.
Therefore, given series is divergent.