A car starts from rest and accelerates at a constant rate until it reaches 70 mi/hr in a distance of 220 ft, at which time the clutch is disengaged. The car then slows down to a velocity of 40 mi/hr in an additional distance of 480 ft with a deceleration which is proportional to its velocity. Find the time t for the car to travel the 700 ft.

Respuesta :

Answer:

[tex]T = 10.43 s[/tex]

Explanation:

During deceleration we know that the deceleration is proportional to the velocity

so we have

[tex]a = - kv[/tex]

here we know that

[tex]\frac{dv}{dt} = - kv[/tex]

so we have

[tex]\frac{dv}{v} = -k dt[/tex]

now integrate both sides

[tex]\int \frac{dv}{v} = -\int kdt[/tex]

[tex]ln(\frac{v}{v_o}) = - kt[/tex]

[tex]ln(\frac{40}{70}) = - k(t)[/tex]

[tex]kt = 0.56[/tex]

Also we know that

[tex]a = \frac{vdv}{ds}[/tex]

[tex]-kv = \frac{vdv}{ds}[/tex]

[tex]\int dv = -\int kds[/tex]

[tex](v - v_o) = -ks[/tex]

[tex](40 - 70)mph = - k (480 ft)[/tex]

[tex]-30 mph = -k(0.091 miles)[/tex]

[tex]k = 329.67[/tex]

so from above equation

[tex]t = \frac{0.56}{329.67} = 1.7 \times 10^{-3} h[/tex]

[tex]t = 6.11 s[/tex]

initially it starts from rest and uniformly accelerate to maximum speed of 70 mph and covers a distance of 220 ft

so we have

d = 220 ft = 67 m = 0.042 miles[/tex]

now we know that

[tex]d = \frac{v_f + v_i}{2} t[/tex]

[tex]0.042 = \frac{70 + 0}{2} t[/tex]

[tex]t = 4.32 s[/tex]

so total time of motion is given as

[tex]T = 4.32 + 6.11 = 10.43 s[/tex]