Answer:
[tex]E_{k}=1589.5ftlb[/tex]
Explanation:
[tex]E_{k}=E_{movement}+E_{rotational}\\[/tex]
[tex]E_{k}=\frac{1}{2}mv^{2}+\frac{1}{2}Iw^{2}[/tex] (1)
For this wheel:
[tex]w=\frac{v}{r}[/tex]
[tex]I=mr^{2}[/tex]: inertia of a ring
We replace (2) and (3) in (1):
[tex]E_{k}=\frac{1}{2}mv^{2}+\frac{1}{2}(mr^{2})(\frac{v}{r})^{2}=mv^{2}=5.5*17^{2}=1589.5ftlb[/tex]