Answer:
a) ∃xP (x)
P(-5) v P(-3) v P(-1) v P(1) v P(3) v P(5)
(at least one of them is true)
b) ∀xP (x)
P(-5) ^ P(-3) ^ P(-1) ^ P(1) ^ P(3) ^ P(5)
(all of them are true)
c) ∀x((x ≠ 1) → P (x))
P(-5) ^ P(-3) ^ P(-1) ^ P(3) ^ P(5)
d) ∃x((x ≥ 0) ∧ P (x))
P(1) v P(3) v P(5)
e) ∃x(¬P (x)) ∧ ∀x((x < 0) → P (x))
[¬P(-5) v ¬P(-3) v ¬P(-1) v ¬P(1) v ¬P(3) v ¬P(5)] ^ [P(-5) ^ P(-3) ^ P(-1)]
[¬P(1) v ¬P(3) v ¬P(5)] ^ [P(-5) ^ P(-3) ^ P(-1)]