Triangle J K L is shown. Angle J K L is a right angle. An altitude is drawn from point K to point M on side L J to form a right angle. The length of K M is 6 and the length of M J is 3. What is the length of line segment LJ? 9 units 12 units 15 units 18 units

Respuesta :

Answer:

[tex]LJ=15\ units[/tex]

Step-by-step explanation:

see the attached figure to better understand the problem

step 1

Find the length side KJ

In the right triangle JKM

Applying the Pythagoras Theorem

[tex]KJ^{2}=JM^{2}+KM^{2}[/tex]

we have

[tex]JM=3\ units[/tex]

[tex]KM=6\ units[/tex]

substitute

[tex]KJ^{2}=3^{2}+6^{2}[/tex]

[tex]KJ^{2}=45}[/tex]

[tex]KJ=\sqrt{45}\ units[/tex]

simplify

[tex]KJ=3\sqrt{5}\ units[/tex]

step 2

Find the value of cosine of angle MJK in the right triangle JKM

[tex]cos(JKM)=JM/KJ[/tex]

substitute the values

[tex]cos(JKM)=\frac{3}{3\sqrt{5}}[/tex]

simplify

[tex]cos(JKM)=\frac{\sqrt{5}}{5}[/tex] -----> equation A

step 3

Find the value of cosine of angle MJK in the right triangle JKL

[tex]cos(JKM)=KJ/LJ[/tex]

we have

[tex]KJ=3\sqrt{5}\ units[/tex]

[tex]cos(JKM)=\frac{\sqrt{5}}{5}[/tex] ----> remember equation A

substitute the values

[tex]\frac{\sqrt{5}}{5}=\frac{3\sqrt{5}}{LJ}[/tex]

Simplify

[tex]LJ=5(3)=15\ units[/tex]

Ver imagen calculista

Answer:

The answer would be option C. 15 units :)

Step-by-step explanation:

Did it on edge :D

Hope this helps!